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ABSTRACT

The 6-azabicyclo[3.2.1]octane ring system, prevalent in a range of biologically active molecules, is prepared through a novel semipinacol
rearrangement utilizing a cyclic phosphorane or sulfite intermediate. The rearrangement proceeds with exclusive N-acyl group migration of a
β-lactam ring and results in carbonyl functionality at the 7- and bridging 8-position of the bicycle. Precursor ring-fused β-lactam diols are prepared
through a sequence of 4-exo trig carbamoyl radical cyclization, regioselective dithiocarbamate group elimination, and dihydroxylation.

The 6-azabicyclo[3.2.1]octane ring system is found in a
wide variety of biologically active, natural1�8 and non-

natural products.9�11 We have targeted the 7,8-dioxo-6-

azabicyclo[3.2.1]octane core structure 1 as a potential

useful building block, particularly for the synthesis of

C-8 substituted variants.3�8 In this letter we report the

synthesis of 1 based on a novel semipinacol rearrangement
of a cis-fused β-lactam (Scheme 1).12,13
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β-Lactams have previously been investigated as precur-
sors to five-membered nitrogen heterocycles,14 though
rarely through rearrangement with C2�C3 bond migra-
tion, and only for nonfused ring systems (Scheme 2).15�17

Notably in all cases only migration of the N-acyl carbon
occurs; compounds resulting from migration of the alter-
native C3�C4 bond of the β-lactam were not observed.

cis-Fused β-lactams 3 were prepared in four steps
(three purifications) from cyclohexenylbromide using
our previously reported carbamoyl radical cycliza-
tion�dithiocarbamate group transfer methodology
(Scheme 3).18 Initial attempts to prepare a substrate
suitable for semipinacol rearrangement (Scheme 1,
LG = SC(S)NEt2) through deprotonation of the
β-lactam and oxidation of the resulting anion were un-
successful, but resulted in the discovery that 3was prone to
dithiocarbamate group elimination using strong bases
such as LDA. Optimized conditions for regioselective
elimination were therefore determined, with the use of
1.1 equiv of both lithium hexamethyldisilazane and MeI
at �78 �C providing good to excellent yields of 4.19 The
MeI is presumed to activate the dithiocarbamate through
S-alkylation, producing a better leaving group.20 In the
absence of MeI, yields were routinely lower (ca. 50%).
Use of a large excess base is detrimental to the yield of 4 as
the double bond can be moved out of conjugation to give
5.21,22 Dihydroxylation of 4 gave the diol 6 as a single
stereoisomer. The stereochemistry of 6was assigned based
on the unlikelihood of forming the alternative highly
strained trans-fused [4.2.0] bicyclic ring system and con-
firmed through X-ray analysis of the corresponding cyclic
sulfites (vide infra).

Scheme 1. Proposed Semipinacol Rearrangement and Represen-
tative Natural Products Containing 8-Functionalized
6-Azabicyclo[3.2.1]octane Ring Systems (LG= Leaving Group)

Scheme 3. Synthesis and Rearrangement of Cis-Fused β-Lac-
tam Diols

Scheme 2. Previous Examples of Ring Expansion ofMono- and
Spirocyclic β-Lactams with N-Acyl Group Migration15�17
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A screen of standard conditions for the pinacol and
semipinacol rearrangement12 of diols and their deri-
vatives was complicated by unexpected difficulties in
selectively activating the secondary over the tertiary
alcohol in 6. Attention therefore turned to the use of
cyclic systems for diol activation. The simplest con-
ditions found involve treatment of 6 with a mixture of
Ph3P and C2Cl6 in refluxing acetonitrile, which pro-
vide the target bridged bicycle 1 in good to excellent
yield.23b,c Ph3PCl2, generated in situ, is presumed to
react with the diol to form a cyclic phosphorane 7.
There is a strong thermodynamic driving force for
rearrangement of 7, involving strain release through
ring expansion of the β-lactam and formation of strong
CdO and PdO bonds. Rearrangements through in situ
generated cyclic phosphoranes have rarely been ap-
plied in synthesis,23 and only to carbon�hydrogen bond
migrations (Meinwald rearrangement). Hence this is
the first example where cyclic phosphoranes have been
applied to rearrangement with carbon�carbon bond
migration.
Two possible rearrangement pathways are available

for 7, with migration of bond i, in either a concerted or
stepwise process, leading to the keto-bridged bicylic lactam
1, or migration of bond ii, leading to the fused 2,3-
dioxopyrrolidine 8. We have only observed formation of
1, irrespective of the N-substituent, suggesting that the
preference for N-acyl group migration, as seen for mono-
and spirocyclic β-lactams (Scheme 2), is maintained in
fused ring systems. The formation of 1 rather than 8 was
initially deduced based on the 13C NMR spectrum of the
alcohol obtained upon L-selectride-mediated reduction of
the ketone and confirmed by X-ray analysis of the crystal-
lized ketone hydrate of 1b (see Supporting Information).19

A second related method, although requiring an
additional step, avoids the potential problem of re-
moval of triphenylphosphine oxide from the reaction
mixture. Diol 6 was transformed into a 1:1 mixture of
diastereomeric cyclic sulfites 9 and 10 (Scheme 4).
Thermolysis of the mixture of 9 and 10 in dipheny-
lether at 190 �C cleanly afforded 1 in excellent yield,
presumably through loss of SO2.

24 The process
was again compatible with alkyl, benzyl, and aryl
N-substituents.

Scheme 4. Thermal Rearrangement of Cyclic Sulfites

Figure 1. X-ray crystal structures of 9b (top) and 10b
(bottom). Selected bond lengths and torsion angles: 9b:
C2�C7 1.542(2) Å, C2�C3 1.558(2) Å, O2�C1�C2�C7
140.95(13)�, O2�C1�C2�C3 �117.46(14)�; 10b: C2�C7
1.5394(17) Å, C2�C3 1.5617(17) Å, O2�C1�C2�C7
147.23(11)�, O2�C1�C2�C3 �108.61(12)�.

(20) Hayashi, T.; Sakurai, A.; Oishi, T. Chem. Lett. 1977, 1483.
(21) The X-ray crystal structure19 of 4b suggests a degree of strain

about a nonplanar carbon�carbon double bond. See Supporting In-
formation for details.

(22) We have previously shown that thermal elimination of dithio-
carbamate 3a gives the nonconjugated alkene 5a in 79% yield: Ahmed,
S.; Baker, L. A.; Grainger, R. S.; Innocenti, P.; Quevedo, C. E. J. Org.
Chem. 2008, 73, 8116–8119.

(23) (a) Applequist, D. E.; Gebauer, P. A.; Gwynn, D. E.; O’Con-
nor, L. H. J. Am. Chem. Soc. 1972, 94, 4272–4278. (b) Decamp, A. E.;
Mills, S. G.; Kawaguchi, A. T.; Desmond, R.; Reamer, R. A.;
DiMichele, L.; Volante, R. P. J. Org. Chem. 1991, 56, 3564–3571.
(c) Barrero, A. F.; Alvarez-Manzaneda, E. J.; Chahboun, R. Tetra-
hedron Lett. 2000, 41, 1959–1962. (d) Defaut, B.; Parsons, T. B.;
Spencer, N.; Male, L.; Kariuki, B. M.; Grainger, R. S. Submitted for
publication.

(24) For semipinacol rearrangements of cyclic sulfites, see: (a)
Griffin, G. W.; Manmade, A. J. Org. Chem. 1972, 37, 2589–2600. (b)
Nemoto, H.;Miyata, J.; Hakamata, H.; Nagamochi,M.; Fukumoto, K.
Tetrahedron 1995, 51, 5511–5522.



Org. Lett., Vol. 14, No. 9, 2012 2237

Careful chromatography allowed for separation of
the two cyclic sulfite diastereoisomers 9b and 10b, the
structures of which were confirmed by X-ray crystal-
lography (Figure 1).19,25 In both cases the C2�C7 bond
(the equivalent of bond i in phosphorane 7, Scheme 3) is
shorter than the C2�C3 bond (the equivalent of bond ii
in 7). However, as seen in the O2�C1�C2�C7 and the
O2�C1�C2�C3 torsion angles, the migrating C2�C7
bond is better aligned with the breaking C1�O2 bond
than the C2�C3 bond.26

The overall strategy is also applicable to the pre-
paration of a larger ring system. Radical cyclization�
dithiocarbamate group transfer of amidocyclohep-
tene 11 gave a separable mixture of diastereoisomers
12 and 13 (Scheme 5), with the structure of the latter
proven by X-ray crystallography.19 Elimination of
the dithiocarbamate group in 12 proceeded without
incident to give the conjugated alkene 14 in excel-
lent yield.27 Surprisingly, 13 proved inert to the
combination of LHMDS and MeI but was success-
fully converted to 14 through thermal elimination.22

Dihydroxylation of 14, followed by semipinacol re-
arrangement, via the cyclic sulfite 16 or directly
through the phosphorane, gave the keto-bridged bi-
cyclic lactam 17 in excellent yield. The 7-azabicyclo-
[4.2.1]nonane ring system is found within members
of the Gelsemium alkaloids, such as gelsedine and
gelselegine.28

In summary, the semipinacol rearrangement of cis-fused
β-lactam diols can be readily achieved through the inter-
mediacy of a cyclic phosphorane or sulfite. Chemoselec-
tive N-acyl group migration leads to keto-bridged bi-
cyclic lactams in excellent yield. The presence of both an
amide and aketone in the rearrangement products 1makes
them potentially versatile intermediates for organic synth-
esis. Future work will concentrate on extension to more
highly substituted systems and their application in target
synthesis.
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Scheme 5. Synthesis of the 8,9-Dioxo-7-azabicyclo-
[4.2.1]nonane Ring System
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